

Mark Scheme (Results)

Summer 2016

Pearson Edexcel IAL in Further Pure Mathematics 1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at www.pearson.com/uk

Summer 2016
Publications Code WFM01_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$
 $(ax^2+bx+c)=(mx+p)(nx+q)$, where $|pq|=|c|$ and $|mn|=|a|$, leading to $x=...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

PhysicsAndMathsTutor.com

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Notes	Marks		
1.	$\sum_{r=1}^{n} r(r^2 -$	$(-3) = \sum_{r=1}^{n} r^3 - 3 \sum_{r=1}^{n} r$				
		$= \frac{1}{4}n^2(n+1)^2 - 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r^2-3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1		
			Correct expression (or equivalent)	A1		
		$= \frac{1}{4}n(n+1)\left[n(n+1)-6\right]$	dependent on the previous M mark Attempt to factorise at least $n(n+1)$ having attempted to substitute both the standard formulae	dM1		
		$=\frac{1}{4}n(n+1)\left[n^2+n-6\right]$	{this step does not have to be written]			
		$= \frac{1}{4}n(n+1)\left[n^2 + n - 6\right]$ $= \frac{1}{4}n(n+1)(n+3)(n-2)$	Correct completion with no errors	A1 cso		
				(4)		
				4		
1	NT 4	Applying ag $n-1$ $n-2$ $n-3$	Question 1 Notes of the printed equation without applying the standard	d formulas		
1.	Note		other combination of these numbers is MOA0M0A0			
			и			
	Alt	Alternative Method: Obtains	$\sum_{r=1}^{n} r(r^2 - 3) \equiv \frac{1}{4} n(n+1) \Big[n(n+1) - 6 \Big] \equiv \frac{1}{4} n(n+a)^n$	(n+b)(n+c)		
		So $a = 1$. $n = 1 \Rightarrow -2 = \frac{1}{4}(1)(2)$	$(2)(1+b)(1+c)$ and $n=2 \Rightarrow 0 = \frac{1}{4}(2)(3)(2+b)(2-b)$	+ c)		
		leading to either $b = -2$, $c = 3$ o	or $b = 3, c = -2$			
	dM1	dependent on the previous M n				
		Substitutes in values of n and sol				
	A1		ther combination of these numbers.			
	Note	Note Using only a method of "proof by induction" scores 0 marks unless there is use of the standard formulae when the first M1 may be scored.				
	Note	1 . 1 . 5 . 3 . 1				
		or $\frac{1}{4}(n^4 + 2n^3 - 5n^2 - 6n) \rightarrow \frac{1}{4}$	-n(n+1)(n+3)(n-2), from no incorrect working.			
	Note	Give final A0 for eg. $\frac{1}{4}n(n+1)$	$[n^2 + n - 6] \rightarrow = \frac{1}{4}n(n+1)(x+3)(x-2)$ unless red	covered.		

Question Number		Scheme	Notes	Marks		
2.	$P: y^2 = 2$	$8x \text{ or } P(7t^2, 14t)$				
(a)		$a \Rightarrow a = 7 \Rightarrow S(7,0)$	Accept (7,0) or $x = 7$, $y = 0$ or 7 marked on the <i>x</i> -axis in a sketch	B1		
(b)	{ <i>A</i> and <i>B</i> l	have x coordinate} $\frac{7}{2}$	Divides their x coordinate from (a) by 2	(1)		
		$8\left(\frac{7}{2}\right) \Rightarrow y^2 = 98 \Rightarrow y = \dots$	substitutes this into the parabola equation and takes the sqaure root to find $y =$			
	or $y = \sqrt{2(2)^n}$ or	$(7) - 3.5)^2 - (3.5)^2 \left\{ = \sqrt{(10.5)^2 - (3.5)^2} \right\}$	or applies $y = \sqrt{\left(2("7") - \left(\frac{"7"}{2}\right)\right)^2 - \left(\frac{"7"}{2}\right)^2}$	M1		
	$7t^2 = 3.5$	$\Rightarrow t = \sqrt{0.5} \Rightarrow y = 2(7)\sqrt{0.5}$	or solves $7t^2 = 3.5$ and finds $y = 2(7)$ "their t "			
	$y = (\pm)7$	$\sqrt{2}$	At least one correct exact value of y. Can be un-simplified or simplified.	A1		
	A, B have	coordinates $\left(\frac{7}{2}, 7\sqrt{2}\right)$ and $\left(\frac{7}{2}, -7\sqrt{2}\right)$				
	\bullet $\frac{1}{2}$	$\operatorname{gle} ABS = \frac{1}{2} \left(2(7\sqrt{2}) \right) \left(\frac{7}{2} \right)$	dependent on the previous M mark A full method for finding	dM1		
	$\bullet \frac{1}{2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	he area of triangle ABS.			
		$=\frac{49}{2}\sqrt{2}$	Correct exact answer.	A1		
				(4)		
		Question	1 2 Notes			
2. (a)	Note		elevant work seen in either part (a) or part	(b)		
(b)	1 st M1	Allow a slip when candidates find the x c $0 < \text{their midpoint} < \text{their } a$	oordinate of their midpoint as long as			
	Note	Give 1 st M0 if a candidate finds and uses $y = 98$				
	1 st A1	Allow any exact value of either $7\sqrt{2}$, –	$7\sqrt{2}$, $\sqrt{98}$, $-\sqrt{98}$, $14\sqrt{0.5}$, awrt 9.9 or a	wrt – 9.9		
	2 nd dM1	Either $\frac{1}{2} \left(2 \times \text{their } 7\sqrt{2} \right) \left(\text{their } x_{\text{midpoint}} \right)$ or $\frac{1}{2} \left(2 \times \text{their } 7\sqrt{2} \right) \left(\text{their } 7\sqrt{2} \right) \left(\text{their } 7\sqrt{2} \right)$				
	Note	Condone area triangle $ABS = \left(7\sqrt{2}\right)\left(\frac{7}{2}\right)$, i.e. $\left(\text{their "}7\sqrt{2}\text{ "}\right)\left(\frac{\text{their "}7\text{ "}}{2}\right)$				
	2 nd A1	Allow exact answers such as $\frac{49}{2}\sqrt{2}$, $\frac{49}{\sqrt{2}}$, $24.5\sqrt{2}$, $\frac{\sqrt{4802}}{2}$, $\sqrt{\frac{4802}{4}}$, $3.5\sqrt{2}$, $49\sqrt{\frac{1}{2}}$				
		or $\frac{7}{2}\sqrt{98}$ but do not allow $\frac{1}{2}(3.5)(2\sqrt{98})$ seen by itself				
	Note	Give final A0 for finding 34.64823228	without reference to a correct exact value.			

Question Number	Scheme			Notes	Marks
3.	$f(x) = x^2 + \frac{3}{x} - 1, x < 0$				
(a)	$f'(x) = 2x - 3x^{-2}$	A		ither $x^2 \to \pm Ax$ or $\frac{3}{x} \to \pm Bx^{-2}$ e A and B are non-zero constants. Correct differentiation	M1
	$f(-1.5) = -0.75$, $f'(-1.5) = -\frac{13}{3}$		-4.33 or	$a = -0.75$ or $f'(-1.5) = -\frac{13}{3}$ or a correct numerical expression for either $f(-1.5)$ or $f'(-1.5)$ an be implied by later working	B1
	$\left\{ \alpha \simeq -1.5 - \frac{f(-1.5)}{f'(-1.5)} \right\} \Rightarrow \alpha \simeq -1.5 - \frac{-0.}{-4.333}$	75 333	Valid a	endent on the previous M mark ttempt at Newton-Raphson using values of $f(-1.5)$ and $f'(-1.5)$	dM1
	$\left\{ \alpha = -1.67307692 \text{ or } -\frac{87}{52} \right\} \Rightarrow \alpha = -1.67$		_	endent on all 4 previous marks -1.67 on their first iteration Ignore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by				
	Correct answer with no w	vorking s	scores no	marks in (a)	(5)
(b) Way 1	f(-1.675) = 0.01458022 f(-1.665) = -0.0295768	v	vithin ±0	a suitable interval for x , which is .005 of their answer to (a) and at ast one attempt to evaluate $f(x)$.	M1
	Sign change (positive, negative) (and $f(x)$ is continuous) therefore (a root) $\alpha = -1.67$ (2 dp.))		values correct awrt (or truncated) 1 sf, sign change and conclusion.	A1 cso
(b)	Alt 1: Applying Newton-Raphson again E	g. Using	$\alpha = -1.6$	$67, -1.673 \text{ or } -\frac{87}{52}$	(2)
Way 2	• $\alpha \simeq -1.67 - \frac{-0.007507185629}{-4.415692926} \left\{ = -0.007507185629 \right\}$ • $\alpha \simeq -1.673 - \frac{0.005743106396}{-4.41783855} \left\{ = -0.006082942257 \right\}$ • $\alpha \simeq -\frac{87}{52} - \frac{0.006082942257}{-4.417893838} \left\{ = -1.006082942257 \right\}$	-1.671700 1.671700	0115} 019}	Evidence of applying Newton- Raphson for a second time on their answer to part (a)	M1
	So $\alpha = -1.67 (2 \text{ dp})$	-		$\alpha = -1.67$	A1
					(2)

			Question 3 Notes			
3. (a)	Note	Incorrect differentiation follo		α with no evidence of applying the		
()		NR formula is final dM0A0.				
	B1	B1 can be given for a correct	numerical expression for	either $f(-1.5)$ or $f'(-1.5)$		
		Eg. either $(-1.5)^2 + \frac{3}{(-1.5)}$	1 or $2(-1.5) - \frac{3}{(-1.5)^2}$	are fine for B1.		
	Final	This mark can be implied by	applying at least one corre	ect value of either $f(-1.5)$ or $f'(-1.5)$		
	dM1	in $-1.5 - \frac{f(-1.5)}{f'(-1.5)}$. So just		incorrect answer and no other evidence		
		scores final dM0A0.				
	Note	Give final dM0 for applying	$1.5 - \frac{f(-1.5)}{f'(-1.5)}$ without f	irst quoting the correct N-R formula.		
3. (b)	A1	Way 1: correct solution on	ly			
				to awrt (or truncated) 1 sf along with		
		a reason and conclusion. Reference to change of sign or eg. $f(-1.675) \times f(-1.675)$				
		or a diagram or < 0 and $>$	0 or one positive, one neg	gative are sufficient reasons. There must		
		be a (minimal, not incorrect)	conclusion, eg. $\alpha = -1.6$	7, root (or α or part (a)) is correct, QED		
		and a square are all acceptabl	e. Ignore the presence or	absence of any reference to continuity.		
		A minimal acceptable reason	and conclusion is "chang	e of sign, hence root".		
		No explicit reference to 2 dec	cimal places is required.	_		
	Note	Stating "root is in between –	1.675 and -1.665" withou	out some reference to $\alpha = -1.67$ is not		
		sufficient for A1				
	Note	Accept 0.015 as a correct ev	aluation of f(-1.675)			
	A1	Way 2: correct solution only				
		-		nderstand that $\alpha = -1.67$ to 2 decimal		
		places. Eg. "therefore my an	swer to part (a) [which m	ust be -1.67] is correct" is fine for A1.		
				• • • • • • • • • • • • • • • • • • • •		
	Note	$-1.67 - \frac{f(-1.67)}{f'(1.67)} = -1.67(2$	dp) is sufficient for M1	A1 in part (b).		
	Note			can also choose x_1 which is less than		
		-1.67169988 and choose	x_2 which is greater than	-1.67169988 with both x_1 and x_2 lying		
		in the interval $\left[-1.675, -1.6\right]$	65] and evaluate $f(x_1)$ and	and $f(x_2)$.		
3. (b)	Note	Helpful Table				
		X	f(x)			
		-1.675	0.014580224			
		-1.674	0.010161305			
		-1.673	0.005743106			
		-1.672	0.001325627			
		-1.671	-0.003091136			
		-1.670	-0.007507186			
		-1.669	-0.011922523			
		-1.668	-0.016337151			
		-1.667	-0.020751072			
		-1.666	-0.025164288			
		-1.665	-0.029576802			

PhysicsAndMathsTutor.com

		PhysicsAndivi	1	1	Т
Question Number		Scheme		Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} k \\ -1 \end{pmatrix}$	$\begin{pmatrix} 3 \\ k+2 \end{pmatrix}$, where k is a constant and let §	$g(k) = k^2 + 2k +$	3	
(a)	$\left\{ \det(\mathbf{A}) = \right\}$	$= $ $k(k+2)+3$ or k^2+2k+3	Correct det(A), un-simplified or simplified	B1
Way 1	=	$= (k+1)^2 - 1 + 3$	At	tempts to complete the square [usual rules apply]	M1
		$= (k+1)^2 + 2 > 0$		$(k+1)^2 + 2$ and > 0	A1 cso
(a)	$\left\{ \det(\mathbf{A}) = \right\}$	$= $ $k(k+2)+3$ or k^2+2k+3	Correct det(A), un-simplified or simplified	(3) B1
Way 2		$x = 2^2 - 4(1)(3)$	Appli	es " $b^2 - 4ac$ " to their $\det(\mathbf{A})$	M1
	All of	$b^2 - 4ac = -8 < 0$ ome reference to $k^2 + 2k + 3$ being above $det(\mathbf{A}) > 0$	ve the <i>x</i> -axis	Complete solution	A1 cso
(a)	g(k) = d	$\det(\mathbf{A}) = \begin{cases} k(k+2) + 3 \text{ or } k^2 + 2k + 3 \end{cases}$	Correct det(A	.), un-simplified or simplified	(3) B1
Way 3	g'(k) = 2	$k + 2 = 0 \Rightarrow k = -1$ $k + 2(-1) + 3$	Finds the v	value of k for which $g'(k) = 0$ tutes this value of k into $g(k)$	M1
		so $\det(\mathbf{A}) > 0$		$g_{\min} = 2$ and states $\det(\mathbf{A}) > 0$	A1 cso
	O IIIIII			- 111111	(3)
(b)	$\mathbf{A}^{-1} = \frac{1}{k}$	$\frac{1}{\left(2+2k+3\right)}\begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$		$\frac{1}{\text{their det}(\mathbf{A})} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$	M1
				Correct answer in terms of k	A1
					(2)
			stion 4 Notes		-
4. (a)	B1	Also allow $k(k+2)3$			
	Note	Way 2: Proving $b^2 - 4ac = -8 < 0$	· ·		
	Note	To gain the final A1 mark for Way 2,			
		some reference to $k^2 + 2k + 3$ being a positive or evaluates $det(\mathbf{A})$ for any quadratic curve that is above the x-ax	value of k to give	ve a positive result or sketches	
	Note	Attempting to solve $det(\mathbf{A}) = 0$ by a	pplying the quad	lratic formula or finding −1±	$\sqrt{2}i$
	is enough to score the M1 mark for Way 2. To gain A1 these candidates need to make				
		some reference to $k^2 + 2k + 3$ being a positive or evaluates $det(\mathbf{A})$ for any quadratic curve that is above the x-ax	value of k to give	ve a positive result or sketches	
(b)	A1	Allow either $\frac{1}{(k+1)^2 + 2} \begin{pmatrix} k+2 & -3 \\ 1 & k \end{pmatrix}$	(1 . 2	2	t.

Question				
Number		Scheme	Notes	Marks
5.	$2z + z^* =$	$\frac{3+4i}{7+i}$		
Way 1	$\left\{2z+z^*=\right.$	$= \begin{cases} 2(a+ib) + (a-ib) \end{cases}$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$ Note: This can be seen anywhere in their solution	B1
	= -	$\frac{(3+4i)}{(7+i)}\frac{(7-i)}{(7-i)}$	Multiplies numerator and denominator of the right hand side by $7 - i$ or $-7 + i$	M1
	= -	25 + 25i 50	Applies $i^2 = -1$ to and collects like terms to give right hand side = $\frac{25 + 25i}{50}$ or equivalent	A1
		$ib = \frac{1}{2} + \frac{1}{2}i$	dependent on the previous B and M marks Equates either real parts or imaginary parts to give at least one of $a =$ or $b =$	ddM1
	$\Rightarrow a = \frac{1}{6},$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
				(5)
Way 2	$\left\{2z+z^*=\right.$	= $2(a+ib)+(a-ib)$	Left hand side = $2(a+ib) + (a-ib)$ Can be implied by eg. $3a + ib$	B1
	(3a+ib)($(7 + i) = \dots$	Multiplies their $(3a + ib)$ by $(7 + i)$	M1
	21 <i>a</i> + 3 <i>a</i> i	$1 + 7bi - b = \dots$	Applies $i^2 = -1$ to give left hand side = $21a + 3ai + 7bi - b$	A1
		(a-b) + (3a+7b) = 3 + 4i (a-b) = 3, 3a+7b=4	dependent on the previous B and M marks Equates both real parts and imaginary parts to give at least one of $a =$ or $b =$	ddM1
	$\Rightarrow a = \frac{1}{6},$	$b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	Either $a = \frac{1}{6}$ and $b = \frac{1}{2}$ or $z = \frac{1}{6} + \frac{1}{2}i$	A1
				(5)
			O 4: 5N4	5
			Question 5 Notes	
5.	Note	Some candidates may let $z = x$		
		So apply the mark scheme with		
	Note	For the final A1 mark, you can	accept exact equivalents for a, b.	

Question Number	Scheme		Notes	Marks
6.	$H: xy = 25$, $P\left(5t, \frac{5}{t}\right)$ is a general point on $P\left(5t, \frac{5}{t}\right)$	Н		
(a)	Either $5t \left(\frac{5}{t} \right) = 25$ or $y = \frac{25}{x} = \frac{25}{5t} = \frac{25}{5t}$	$\frac{5}{t}$ or	$x = \frac{25}{y} = \frac{25}{\frac{5}{t}} = 5t$ or states $c = 5$	B1
				(1)
(b)	$y = \frac{25}{x} = 25x^{-1} \Rightarrow \frac{dy}{dx} = -25x^{-2} = -\frac{25}{x^2}$		$\frac{dy}{dx} = \pm k x^{-2}$ where <i>k</i> is a numerical value	
	$xy = 25 \Rightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$		Correct use of product rule. The sum of two terms, one of which is correct.	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right)$		$\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their}\frac{\mathrm{d}x}{\mathrm{d}t}}$	
	$\left\{ \text{At } A, \ t = \frac{1}{2}, \ x = \frac{5}{2}, \ y = 10 \right\} \Rightarrow \frac{dy}{dx} = -4$		Correct numerical gradient at <i>A</i> , which is found using calculus. Can be implied by later working	A1
	So, $m_N = \frac{1}{4}$		lies $m_N = \frac{-1}{m_T}$, to find a numerical m_N , where m_T is found from using calculus. Can be implied by later working	M1
	$\bullet y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$	75	Correct line method for a normal where a numerical $m_N (\neq m_T)$ is found	M1
	$\bullet 10 = \frac{1}{4} \left(\frac{5}{2} \right) + c \Rightarrow c = \frac{75}{8} \Rightarrow y = \frac{1}{4}x$	$+\frac{75}{8}$	from using calculus. Can be implied by later working	
	leading to $8y - 2x - 75 = 0$ (*)		Correct solution only	A1
(c)	$y = \frac{25}{x} \implies 8\left(\frac{25}{x}\right) - 2x - 75 = 0$	or x =	$= \frac{25}{y} \implies 8y - 2\left(\frac{25}{y}\right) - 75 = 0$	(5)
	or $x = 5t$, $y = \frac{5}{t} \implies$	8(5t)	$-2\left(\frac{5}{t}\right) - 75 = 0$	M1
	Substitutes $y = \frac{25}{x}$ or $x = \frac{25}{y}$ or $x = \frac{25}{y}$		•	
	or their normal equation to obtain an e			
	$2x^2 + 75x - 200 = 0 \text{or} 8y^2 - 75y - 50$			
	$(2x-5)(x+40) = 0 \Rightarrow x =$ or $(y-10)(8y+5) = 0 \Rightarrow y =$ or $(2t-1)(t+8) = 0 \Rightarrow t =$ dependent on the previous M mark Correct attempt of solving a 3TQ to find either $x =, y =$ or $t =$			13.41
				dM1
	Finds at least one of eit		<u> </u>	A1
	$B\left(-40, -\frac{5}{8}\right)$ state		correct coordinates (If coordinates are not can be paired together as $x =, y =$)	A1
	-			(4)
				10

		Question 6 Notes
6. (a)	Note	A conclusion is not required on this occasion in part (a).
	B1	Condone reference to $c = 5$ (as $xy = c^2$ and $\left(ct, \frac{c}{t}\right)$ are referred in the Formula book.)
(b)	Note	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{5}{t^2} \left(\frac{1}{5}\right) = -\frac{1}{t^2} \Rightarrow m_N = t^2 \Rightarrow y - 10 = t^2 \left(x - \frac{5}{2}\right)$ scores only the first M1.
		When $t = \frac{1}{2}$ is substituted giving $y - 10 = \frac{1}{4} \left(x - \frac{5}{2} \right)$
		the response then automatically gets A1(implied) M1(implied) M1
(c)	Note	You can imply the final three marks (dM1A1A1) for either
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \to \left(-40, -\frac{5}{8}\right)$
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \to \left(-40, -\frac{5}{8}\right)$
		$\bullet 8(5t) - 2\left(\frac{5}{t}\right) - 75 = 0 \rightarrow \left(-40, -\frac{5}{8}\right)$
		with no intermediate working.
		You can also imply the middle dM1A1 marks for either
		• $8\left(\frac{25}{x}\right) - 2x - 75 = 0 \to x = -40$
		• $8y - 2\left(\frac{25}{y}\right) - 75 = 0 \to y = -\frac{5}{8}$
		• $8(5t) - 2(\frac{5}{t}) - 75 = 0 \rightarrow x = -40 \text{ or } y = -\frac{5}{8}$
		with no intermediate working.
	Note	Writing $x = -40$, $y = -\frac{5}{8}$ followed by $B\left(40, \frac{5}{8}\right)$ or $B\left(-\frac{5}{8}, -40\right)$ is final A0.
	Note	Ignore stating $B\left(\frac{5}{2}, 10\right)$ in addition to $B\left(-40, -\frac{5}{8}\right)$

Question Number	Scheme		Notes	Marks	
7. (a)	Rotation	•	Rotation	B1	
	67 degrees (anticlockwise)	awrt 67 degr	$\arctan\left(\frac{12}{5}\right)$, $\tan^{-1}\left(\frac{12}{5}\right)$, $\sin^{-1}\left(\frac{12}{13}\right)$, $\cos^{-1}\left(\frac{5}{13}\right)$, rees, awrt 1.2, truncated 1.1 (anticlockwise), 93 degrees clockwise or awrt 5.1 clockwise	B1 o.e.	
	about (0,0)		e mark is dependent on at least one of the previous B marks being awarded. About (0,0) or about O or about the origin	dB1	
	Note: Give 2 nd B0 for 67 degrees	clockwise o.e.		((3)
(b)	$\left\{\mathbf{Q} = \right\} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Correct matrix	B1	
				((1)
(c)	$\left\{\mathbf{R} = \mathbf{PQ} = \right\} \begin{pmatrix} \frac{5}{13} & -\frac{12}{13} \\ \frac{12}{12} & \frac{5}{12} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; =$	$ \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ 5 & 13 \end{pmatrix} $	Multiplies P by their Q in the correct order and finds at least one element	M1	
	$\left(\begin{array}{ccc} \frac{12}{13} & \frac{5}{13} \end{array}\right) \left(\begin{array}{ccc} 1 & 0 \end{array}\right)$	$\left(\begin{array}{cc} \frac{5}{13} & \frac{12}{13} \end{array}\right)$	Correct matrix	A1	(2)
					(2)
(d) Way 1	$\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix} \begin{pmatrix} x \\ kx \end{pmatrix} = \begin{pmatrix} x \\ kx \end{pmatrix}$	Timow & being	the equation "their matrix \mathbf{R} " $\begin{bmatrix} x \\ kx \end{bmatrix} = \begin{bmatrix} x \\ kx \end{bmatrix}$ g replaced by any non-zero number eg. 1. and by at least one correct ft equations below.	M1	
	$-\frac{12}{13}x + \frac{5kx}{13} = x \text{ or } \frac{5}{13}x + \frac{12kx}{13}$	-	Uses their matrix equation to form an equation in k and progresses to give $k = \text{numerical value}$	M1	
	So $k = 5$		dependent on only the previous M mark $k = 5$	A1 cao	
	Dependent on all previous mark	s being scored i			
	• Solves both $-\frac{12}{13}x + \frac{5kx}{13}$ • Finds $k = 5$ and checks the Confirms that $\begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$	at it is true for th	13	A1 cso	
	12 5			((4)
(d)	Either $\cos 2\theta = -\frac{12}{13}$, $\sin 2\theta = \frac{5}{13}$			M1	
Way 2		Full metho	d of finding 2θ , then θ and applying $\tan \theta$	M1	
	$\left\{k = \frac{1}{2} \arctan\left(\frac{1}{2} \arccos\left(-\frac{12}{13}\right)\right)\right\}$	ta	$ \operatorname{an}\left(\frac{1}{2}\operatorname{arccos}\left(-\frac{12}{13}\right)\right) \text{ or } \tan\left(\operatorname{awrt} 78.7^{\circ}\right) \text{ or} $	A1	
			tan(awrt 1.37). Can be implied.		
	So $k = 5$		k = 5 by a correct solution only	A1	(4)
					(4) 10
					10

Physics And Maths Tutor.com

		Question 7 Notes
7. (a)	Note	Condone "Turn" for the 1st B1 mark.
	Note	Penalise the first B1 mark for candidates giving a combination of transformations.
(c)	Note	Allow 1 st M1 for eg. "their matrix \mathbf{R} " $\begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ or "their matrix \mathbf{R} " $\begin{pmatrix} k \\ k^2 \end{pmatrix} = \begin{pmatrix} k \\ k^2 \end{pmatrix}$
		or "their matrix \mathbf{R} " $\begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{k} \\ 1 \end{pmatrix}$ or equivalent
	Note	$y = (\tan \theta)x : \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} = \begin{pmatrix} -\frac{12}{13} & \frac{5}{13} \\ \frac{5}{13} & \frac{12}{13} \end{pmatrix}$

Question Number	Scheme		Notes	Marks		
8.	$f(z) = z^4 + 6z^3 + 76z^2 + az + b$, a, b as	are real constants. $z_1 = -3 + 8i$ is given.				
(a)	-3-8i		-3-8i	B1		
(b)	$z^2 + 6z + 73$	or any	tempt to expand $(z-(-3+8i))(z-(-3-8i))$ valid method to establish a quadratic factor $-3\pm 8i \Rightarrow z+3=\pm 8i \Rightarrow z^2+6z+9=-64$ or sum of roots -6 , product of roots 73 to give $z^2 \pm (\text{sum})z + \text{product}$ $z^2+6z+73$	M1	(1)	
	$f(z) = (z^2 + 6z + 73)(z^2 + 3)$	e;	Attempts to find the other quadratic factor. g. using long division to get as far as $z^2 +$ or eg. $f(z) = (z^2 + 6z + 73)(z^2 +)$	M1		
	$\left\{z^2 + 3 = 0 \Rightarrow z = \right\} \pm \sqrt{3}i$	Corre	$\frac{z^2 + 3}{\text{dependent on only the previous M mark}}$ et method of solving the 2 nd quadratic factor	A1 dM1		
	(4 . 5 . 5 . 7 . 4 .) = (5 . 5		$\sqrt{3}i$ and $-\sqrt{3}i$	A1		
(c)			Criteria		(6)	
	$\frac{1}{8}$		 -3±8i plotted correctly in quadrants 2 and 3 with some evidence of symmetry Their other two <i>complex roots</i> (which are found from solving their 2nd quadratic in (b)) are plotted correctly with some evidence of symmetry about the <i>x</i>-axis 			
	-3 $-\sqrt{3}$ Re -8		Satisfies at least one of the two criteria Satisfies both criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.	B1 ft		
					(2)	
		Ωυρο	stion 8 Notes		9	
8. (b)	Note Give 3^{rd} M1 for $z^2 + k = 0$.		at least one of either $z = \sqrt{k}i$ or $z = -\sqrt{k}$	i		
0. (<i>0)</i>	Note Give 3 M1 for $z + k = 0$, Note Give 3 rd M0 for $z^2 + k = 0$,					
	Note Give 3^{rd} M0 for $z^2 + k = 0$, Note Candidates do not need to fi					

Question Number	Scheme	Notes	Marks
9.	$2x^2 + 4x$	$x-3=0$ has roots α , β	
(a)	$\alpha + \beta = -\frac{4}{2} \text{ or } -2, \ \alpha\beta = -\frac{3}{2}$	Both $\alpha + \beta = -\frac{4}{2}$ and $\alpha\beta = -\frac{3}{2}$. This may be seen or implied anywhere in this question.	B1
(i)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$	Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)	M1
	$= (-2)^2 - 2\left(-\frac{3}{2}\right) = 7$	7 from correct working	A1 cso
(ii)	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ or $= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$	Use of an appropriate and correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1
	$= (-2)^{3} - 3\left(-\frac{3}{2}\right)(-2) = -17$ or $= (-2)(7\frac{3}{2}) = -17$	−17 from correct working	A1 cso
			(5)
(b)	Sum = $\alpha^2 + \beta + \beta^2 + \alpha$ = $\alpha^2 + \beta^2 + \alpha + \beta$ = $7 + (-2) = 5$	Uses at least one of their $\alpha^2 + \beta^2$ or $\alpha + \beta$ in an attempt to find a numerical value for the sum of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	M1
	Product = $(\alpha^2 + \beta)(\beta^2 + \alpha)$	Expands $(\alpha^2 + \beta)(\beta^2 + \alpha)$ and uses at least one of their $\alpha\beta$ or $\alpha^3 + \beta^3$ in an attempt to find a numerical	M1
	$= \left(-\frac{3}{2}\right)^2 - 17 - \frac{3}{2} = -\frac{65}{4}$	value for the product of $(\alpha^2 + \beta)$ and $(\beta^2 + \alpha)$	1411
	$x^2 - 5x - \frac{65}{4} = 0$	Applies $x^2 - (\text{sum})x + \text{product (Can be implied)}$ ("= 0" not required)	M1
	$4x^2 - 20x - 65 = 0$	Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
			(4)
	i	$\alpha^2 + \beta$ and $\beta^2 + \alpha$ explicitly	
(b)	' '	and so $\alpha^2 + \beta = \frac{5 - 3\sqrt{10}}{2}$, $\beta^2 + \alpha = \frac{5 + 3\sqrt{10}}{2}$	
	$\left(x - \left(\frac{5 - 3\sqrt{10}}{2}\right)\right) \left(x - \left(\frac{5 + 3\sqrt{10}}{2}\right)\right)$	Uses $\left(x - \left(\alpha^2 + \beta\right)\right)\left(x - \left(\beta^2 + \alpha\right)\right)$ with exact numerical values. (May expand first)	M1
	$= x^{2} - \left(\frac{5 + 3\sqrt{10}}{2}\right)x - \left(\frac{5 - 3\sqrt{10}}{2}\right)x + $	$\left(\frac{5-3\sqrt{10}}{2}\right)\left(\frac{5+3\sqrt{10}}{2}\right)$ Attempts to expand using exact numerical values for $\alpha^2 + \beta$ and $\beta^2 + \alpha$	M1
	$\Rightarrow x^2 - 5x - \frac{65}{4} = 0$	Collect terms to give a 3TQ. ("= 0" not required)	M1
	$4x^2 - 20x - 65 = 0$	Any integer multiple of $4x^2 - 20x - 65 = 0$, including the "= 0"	A1
			(4)
			9

	Question 9 Notes					
9. (a)	1st A1	$\alpha + \beta = 2$, $\alpha\beta = -\frac{3}{2} \Rightarrow \alpha^2 + \beta^2 = 4 - 2(-\frac{3}{2}) = 7$ is M1A0 cso				
(a)	Note	Finding $\alpha + \beta = -2$, $\alpha\beta = -\frac{3}{2}$ by writing down or applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ but then				
		writing $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 + 3 = 7$ and $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = -8 - 9 = -17$				
		scores B0M1A0M1A0 in part (a).				
	Note	Applying $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (a) will score B0M0A0M0A0				
		Eg: Give no credit for $\left(\frac{-4+\sqrt{40}}{4}\right)^2 + \left(\frac{-4+\sqrt{40}}{4}\right)^2 = 7$				
		or for $\left(\frac{-4 + \sqrt{40}}{4}\right)^3 + \left(\frac{-4 + \sqrt{40}}{4}\right)^3 = -17$				
(b)	Note	Candidates are allowed to apply $\frac{-4 + \sqrt{40}}{4}$, $\frac{-4 + \sqrt{40}}{4}$ explicitly in part (b).				
	Note	A correct method leading to a candidate stating $a = 4$, $b = -20$, $c = -65$ without writing a				
		final answer of $4x^2 - 20x - 65 = 0$ is final M1A0				

Question Number		Scheme	Notes	Marks	
10.	$u_1 = 5, \ u_{n+1} = 3u_n + 2, \ n \ge 1.$ Required to prove the result, $u_n = 2 \times (3)^n - 1, \ n \in \square^+$				
(i)		$n=1: u_1 = 2(3) - 1 = 5$ $u_1 = 2(3) - 1 = 5 \text{ or } u_1 = 6 - 1 = 6$			
		the result is true for $n = k$)			
	$u_{k+1} = 3(1)$	$2(3)^k - 1 + 2$	Substitutes $u_k = 2(3)^k - 1$ into $u_{k+1} = 3u_k + 2$	M1	
	$= 2(3)^{k+1} - 1$		dependent on the previous M mark Expresses u_{k+1} in term of 3^{k+1}	dM1	
			$u_{k+1} = 2(3)^{k+1} - 1$ by correct solution only	A1	
	If the res				
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k + 1}$. As the result has been shown to be $\underline{\text{true for } n = 1}$, then the result $\underline{\text{is true for all } n}$				
			n	5	
	Required to prove the result $\sum_{r=1}^{n} \frac{4r}{3^r} = 3 - \frac{(3+2n)}{3^n}$, $n \in \square^+$				
(ii)	n = 1 : LH	$IS = \frac{4}{3}, RHS = 3 - \frac{5}{3} = \frac{4}{3}$	Shows or states both LHS = $\frac{4}{3}$ and RHS = $\frac{4}{3}$ or states LHS = RHS = $\frac{4}{3}$	B1	
	(Assume the result is true for $n = k$)				
	1.1	$3 - \frac{(3+2k)}{3^k} + \frac{4(k+1)}{3^{k+1}}$	Adds the $(k+1)^{th}$ term to the sum of k terms	M1	
			dependent on the previous M mark Makes 3^{k+1} or $(3)3^k$	dM1	
	$= 3 - \frac{3(3+2k)}{2^{k+1}} + \frac{4(k+1)}{2^{k+1}}$ a common denominator for their				
		3	Correct expression with common denominator 3^{k+1} or $(3)3^k$ for their fractions.	A1	
	$= 3 - \left(\frac{3(3+2k) - 4(k+1)}{3^{k+1}}\right) = 3 - \left(\frac{5+2k}{3^{k+1}}\right)$				
	$= 3 - \frac{(3+2(k+1))}{3^{k+1}}$ 3 - $\frac{(3+2(k+1))}{3^{k+1}}$ by correct solution only			A1	
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result <u>is true for all n</u>				
				6	
			Duration 10 Notes	11	
(i) & (ii)	Question 10 Notes Note: Final A1 for parts (i) and (ii) is dependent on all prayious marks being second in the				
(i) & (ii)	Note Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in the It is gained by candidates conveying the ideas of all four underlined points				
	either at the end of their solution or as a narrative in their solution.				
(i)	Note	r the 1 st B1 mark in part (i).			
(-)	Note $u_1 = 3 + 2$ without stating $u_2 = 2(3) - 1 = 5$ or $u_3 = 6 - 1 = 5$ is B0				
(ii)	Note LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (ii).				
(ii)	Note $u_1 = 3+2$ without stating $u_1 = 2(3) - 1 = 5$ or $u_1 = 6-1 = 5$ is B0 Note LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (ii).				